Description of Singular Part of Thermal Conductivity on Base of Corresponding States Law

S.N. Kravchun and V.M. Abdulaeva

Physics Faculty

Moscow Aviation Institute

Volokolamskoe Shosse 4

125871, Moscow, Russia

Singular part of thermal conductivity in a broad vicinity of critical point can be described by a relationship [1]

$$\lambda_{s} = \Lambda \cdot X^{-\psi} \cdot \cos\theta,$$

where

$$X = t + |\gamma|^{u\beta}, \qquad = \gamma \frac{3}{2B}[\omega + (B - 1) \cdot t] \qquad \theta = \arctan \frac{Y}{X^{\beta}}$$

$$t = (T - T_c)/T_c$$
, $\omega = (\rho - \rho_c)/\rho_c$, $\beta = 0.323$, $\psi = 0.646$.

In spite of some weakness this relationship has an important advantage - it contains only two individual constants apart from critical temperature T_c and critical density ρ_c . Dimensionless constant B are functions of $z_c = P_c \ V_c \ / \ (R \cdot T_c) \ [1]$. According to one parameter corresponding states low Λ/λ must be function of z_c too,

$$\lambda^* = \left(\frac{R^3 T_c}{M}\right)^{1/2} / (N_A V_c)^{1/3},$$

where R, N_A , V_c , M are the universal gas constant, the Avogadro number, critical molar volume, and molar mass, respectively.

On basis of experimental data for thermal conductivity of H_2O , O_2 , CO_2 , Ar, n- C_4H_{10} in critical region we established the correlation $\Lambda/\lambda^*\approx 0.59$ - $1.27\cdot z_c$. This relation provides a way of estimating a singular part of thermal conductivity on base of values T_c , ρ_c , and z_c .

[1] L.P. Phylippov, "Calculation and Prediction Methods for Substance Properties," Moscow, Moscow State University (1988).